ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol. 10, No. 2, pp. 225-233

Manifestations of electromagnetic phenomena in atmospheric processes

S.N. Artekha , A.V. Belyan , N.S. Erokhin 
Space Research Institute of RAS, Moscow, Russia
Data from space and ground-based observations show a distinct asymmetry of typhoon genesis. Systematic data demonstrate the important role of electromagnetic phenomena in many atmospheric processes (thunderstorms, tornadoes, tropical cyclones – typhoons, hurricanes). Multilayer charged cloud system often represents a certain dynamic equilibrium structure. In the paper, it is made numerical estimates of the forces and mechanisms for atmospheric plasma-like subsystems and proved the need to account the influence of electromagnetic forces on the formation, maintenance of the structure and characteristics of their movement.
Keywords: тропические циклоны, тайфуногенез, торнадо, многослойные заряженные облачные системы, электрические явления в атмосфере, tropical cyclones, typhoon genesis, tornado, multi-layer charged cloud system, electrical phenomena in the atmosphere
Full text

References:

  1. Artekha S.N., Gol'braikh E., Erokhin N.S., Voprosy atomnoi nauki i tekhniki, 2003, No. 4, pp. 94–99.
  2. Artekha S.N., Erokhin N.S., Elektromagnitnye yavleniya, 2005, No. 5, No. 1 (14), pp. 3–20.
  3. Baibakov S.N., Martynov A.I., S orbity sputnika – v glaz taifuna (Orbit - in the eye of the Typhoon), Moscow: Nauka, 1986.
  4. Dobryshman E.M., Meteorologiya i gidrologiya, 1994, No. 11, pp. 83–99.
  5. Landau L.D., Lifshits E.M., Gidrodinamika (Hydrodynamics), Moscow: Nauka, 1988.
  6. Nerushev A.F., Netreba S.N., Svirkunov P.N., Yaroshevich M.I., DAN, 1997, Vol. 354, No. 1, pp. 96–100.
  7. Khain A.P., Sutyrin G.G., Tropicheskie tsiklony i ikh vzaimodeistvie s okeanom (Tropical cyclones and their interaction with the ocean), Leningrad: Gidrometeoizdat, 1983.
  8. Sharkov E.A., Issledovaniya Zemli iz kosmosa, 1997, No. 6, pp. 87–111.
  9. Sharkov E.A., Kim G.A., Pokrovskaya I.V., Issledovaniya Zemli iz kosmosa, 2011, No. 2, pp. 18–25.
  10. Sharkov E.A., Shramkov Ya.N., Pokrovskaya I.V., Issledovaniya Zemli iz kosmosa, 2012, No. 2, pp. 73–82.
  11. Black R.A., Hallet J., Electrification of the Hurricane, J. Atmos. Sci, 1999, Vol. 56, pp. 2004–2028.
  12. Byrne G.J., Few A.A., Stewart M.F., Electric Field Measurement within a Severe Thunderstorm Anvil, J. Geophys. Res., 1989, Vol. 94 (D5), pp. 6297–6307.
  13. Hare R., On the Causes of the Tornado or Waterspout, Amer. J. Sci. Arts., 1837, Vol. 32, pp. 153–161.
  14. Kazimirovsky E., Herraiz M., De La Morena B.A., Effects on the ionosphere due to phenomena occurring below it, Surveys in Geophys., 2003, Vol. 24, pp. 139–184.
  15. Leary L.A., Ritchie E.A., Lightning Flash Rates as an Indicator of Tropical Cyclone Genesis in the Eastern North Pacific, Month. Weather Rev., 2009, Vol. 137 (10), pp. 3456–3470.
  16. Marshall T.C., Rust W.D., Electrical Structure and Updraft Speeds in Thunderstorms over the Southern Great Plains, J. Geophys. Res., 1995, Vol. 100, pp. 1001–1015.
  17. Merill R.T., A Comparison of Large and Small Tropical Cyclones, Mon. Wea. Rev., 1984, Vol. 112, pp. 1408–1418.
  18. Price C., Asfur M., Yair Y., Maximum hurricane intensity preceded by increase in lightning frequency, Nature Geosci., 2009, Vol. 2 (5), pp. 329–332.
  19. Rodgers E.B., Stout J., Steranka J., Chang S.W., Tropical cyclone-upper atmospheric interaction as inferred from satellite total ozone observations, J. Appl. Meteorol., 1990, Vol. 29 (9), pp. 934–957.
  20. Rycroff M.J., Israelsson S., Price C., The global atmospheric circuit, solar activity and climate change, J. Atmos. and Solar-Terr. Phys., 2000, Vol. 62, pp. 1563–1576.
  21. Sorokin V.M., Chmyrev V.M., Yaschenko A.K., Electrodynamic model of the lower atmosphere and the ionosphere coupling, J. Atmos. and Solar-Terr. Phys., Vol. 63, pp. 1681–1691.
  22. Stout J., Rodgers E.B., Nimbus-7 total ozone observations of western North Pasific tropical cyclones, J. Appl. Meteorol., 1992, Vol. 31 (7), pp. 758–783.
  23. Stozhkov Y.I., The role of cosmic rays in the atmospheric processes, Journal of Physics G: Nuclear and Particle Physics, 2003, Vol. 29, pp. 913–923.
  24. Tinsley B.A., Influence of solar wind on the global electric circuit, and inferred effects on cloud microphysics, temperature, and dynamics in the troposphere, Space Sci. Rev., 2000, Vol. 94, pp. 231–258.
  25. Vonnegut B., Electrical Theory of Tornadoes, J. Geophys. Res., 1960, Vol. 65 (1), pp. 203–212.
  26. Williams E.R., The Tripole Structure of Thunderstorms, J. Geophys. Res., 1989, Vol. 94 (D11), pp. 13151–13167.
  27. Winn W.P., Hunayday S.J., Aulich G.D., Electric Field at the Ground Tornado, J. Geophys. Res., 2000, Vol. 105 (D15), pp. 20145–20153.
  28. Ziegler C.L., MacGorman D.R., Observed Lightning Morphology Relative to Modeled Space Charge and Electric Field Distributions in a Tornadic Storm, J. Atmos. Sci, 1994, Vol. 51 (6), pp. 833–851.