ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, Vol. 9, No. 4, pp. 173-185

Seasonal and interannual variability of submesoscale eddy activity in the Baltic, Black and Caspian seas

S.S. Karimova 
Space Research Institute of RAS
Due to their high spatial resolution, wide swath of observation, independence on cloud cover and light conditions
satellite synthetic aperture radar (SAR) images present an effective tool for getting more information on submesoscale
eddies in the sea. Recently the advantages of SAR images were taken for retrieving statistics on submesoscale vortical
structures in the Baltic, Black and Caspian seas [Karimova S.S. Spiral eddies in the Baltic, Black and Caspian seas
as seen by satellite radar data // Advances in Space Research. 2011.]. The
dataset used in that analysis included over 2000 medium resolution Envisat ASAR and ERS-2 SAR images obtained in
2009-2010 in the different parts of the seas mentioned. The work presented hereafter is aimed to exclude the influence
of SAR density inhomogeneity on spatio-temporal parameters of submesoscale eddy activity in the basins being under
consideration. As a result of the analysis undertaken it was discovered that in some cases visible eddy activity seems to
depend on chlorophyll a concentration. A probable oceanographic factor which caused especially frequent detection of
eddies in certain regions was discovered to be shallow location of thermo- or halocline. The latter provided an evidence
for baroclinic instability to be a main reason for generation of submesoscale eddy clusters.
Keywords: submesoscale eddies, small-scale eddies, spiral eddies, baroclinic instability, satellite radar, Envisat ASAR, ERS-2 SAR, the Baltic Sea, the Black Sea, the Caspian Sea
Full text


  1. Van-Daik M., Al'bom techenii zhidkosti i gaza (The album liquid and gas flows), Moscow: Mir, 1986, 181 p.
  2. Ginzburg A.I., Issledovanie Zemli iz kosmosa, 1991, No. 2, pp. 75-84.
  3. Ginzburg A.I., Okeanologiya, 1992, Vol. 32, Issue 6, pp. 997-1004.
  4. Golitsyn G.S., Vos'maya Vserossiiskaya Otkrytaya konferentsiya “Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa” (Proc. 8th All-Russian Open Conference “Actual problems in remote sensing of the Earth from space”), Moscow, IKI RAN, 15-19 November 2010 p. 226.
  5. Dolzhanskii F.V., Krymov V.A., Manin D.Yu., UFN, 1990, Vol. 160, Issue 7, pp. 1–47.
  6. Dubina V.A., Fishchenko V.K., Konstantinov O.G., Mitnik L.M., Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, Vol. 8, No. 3, pp. 188-196.
  7. Zatsepin A.G., Baranov V.I., Kondrashov A.A., Korzh A.O., Kremenetskii V.V., Ostrovskii A.G., Solov'ev D.M., Okeanologiya, 2011, Vol. 51, No. 4, pp. 592-605.
  8. Karimova S.S., Issledovanie Zemli iz kosmosa, 2012, No. 3, pp. 31-47.
  9. Kostyanoi A.G., Ginzburg A.I., Sheremet N.A., Lavrova O.Yu., Mityagina M.I., Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2010, Vol. 7, No. 1, pp. 248-259.
  10. Mityagina M.I., Lavrova O.Yu., Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2008, Issue 5, Vol. 2, pp. 155-164.
  11. Mityagina M.I., Lavrova O.Yu., Issledovanie Zemli iz kosmosa, 2009, No. 5, pp. 72-79.
  12. Serebryanyi A.N., Lavrova O.Yu., Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2008, Issue 5, Vol. 2, pp. 206-215.
  13. Fedorov K.N., Fizicheskaya priroda i struktura okeanicheskikh frontov (), Leningrad: Gidrometeoizdat, 1983, 296 p.
  14. Fedorov K.N., Ginzburg A.I., Pripoverkhnostnyi sloi okeana (The surface layer of the ocean), Leningrad: Gidrometeoizdat, 1988, 303 p.
  15. Alpers W., Huhnerfuss H., The damping of ocean waves by surface films: A new look at an old problem, Journal of Geophysical Research, 1989, Vol. 94, No. C5, pp. 6251–6265.
  16. Boubnov B.M., Golitsyn G.S., Convection in Rotating Fluids, Kluwer Academic Publishers, Dordrecht, 1995.
  17. Dokken S.T., Wahl T., Observations of spiral eddies along the Norwegian Coast in ERS SAR images, FFI Rapport 96/01463, 1996.
  18. Eldevik T., Dysthe K.B., Spiral eddies, Journal of Physical Oceanography, 2002, Vol. 32, No. 3, pp. 851-869.
  19. Espedal H.A., Johannessen O.M., Johannessen J.A., Dano E., Lyzenga D., Knulst J.C., COASTWATCH ’95: A tandem ERS-1/2 SAR detection experiment of natural film on the ocean surface, Journal of Geophysical Research, 1998, Vol. 103, pp. 24969-24982.
  20. Fu L.-L., Holt B., Seasat views oceans and sea ice with Synthetic Aperture Radar, JPL publication 81-120, February 15, 1982.
  21. Ivanov A.Yu., Ginzburg A.I., Oceanic eddies in synthetic aperture radar images. Proc. of the Indian Academy of Sciences. Earth and Planetary Sciences, Vol. 111(3), pp. 281–295, 2002.
  22. Johannessen J.A., Digranes G., Espedal H., Johannessen O.M., Samuel P., Browne D., Vachon P., SAR ocean feature catalogue, ESA Publication Division, ESTEC, Noordwijk, The Netherlands:1994, 106 p.
  23. Johannessen J.A., Kudryavtsev V., Akimov D., Eldevik T., Winther N., Chapron B., On radar imaging of current features: 2. Mesoscale eddy and current front detection, Journal of Geophysical Research, 2005, Vol. 110, C07017, doi:10.1029/2004JC002802.
  24. Karimova S.S., Spiral eddies in the Baltic, Black and Caspian seas as seen by satellite radar data, Advances in Space Research, 2011, available at:
  25. Karimova S., SAR observations of spiral eddies in the inner seas, Proc. 4th International Workshop SeaSAR 2012, 18-22 June 2012, Tromsø, Norway.
  26. Lapeyre G., Klein P., Impact of the small-scale elongated filaments on the oceanic vertical pump, Journal of Marine Research, 2006, 64(6), 835-85.
  27. Munk W., Armi L., Fischer K., Zachariasen F., Spirals on the sea, Proc. R. Soc. Lond., 2000, Vol. 456, pp. 1217-1280.
  28. Sandven S., Johannessen J.A., Kloster K., Hamre T., Sætre H.J., Satellite Studies of Ocean Fronts and Eddies for Deepwater Development in the Norwegian Sea, Proc. Tenth International Offshore and Polar Engineering Conference, Seattle, USA, May 28- June 2, 2000.
  29. Shen C.Y., Evans T.E., Inertial instability and sea spirals, Geophysical Research Letters, 2002, Vol. 29(23), 2124, doi:10.1029/2002GL015701.
  30. Yamaguchi S., Kawamura H., SAR-imaged spiral eddies in Mutsu Bay and their dynamic and kinematic models, Journal of Oceanography, 2009, Vol. 65(4), pp. 525-539.