ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, Vol. 9, No. 4, pp. 63-69

Variations of atmospheric delay of GPS/GLONASS signals from satellite microwave radiometer data and modeling

M.L. Mitnik , L.M. Mitnik 
V.I. Ilichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, 690041, Vladivostok, Baltiyskaya, 43
Relationship of GPS and GLONASS signal delay with the variations of meteorological characteristics of the atmosphere
is considered. Wet component of the delay is proportional to the total atmospheric water vapour content V and
cloud one- to the total cloud liquid water content Q. V and Q values are retrieved from the measurements of satellite
microwave radiometers SSM/I, AMSR-E, TMI, AMSU-A and others. Fields of wet and cloud delays in the tropical
and extratropical cyclones over the Pacific Ocean are given. They were computed from V and Q fields which were determined
from Aqua AMSR-E data. Applications of V-fields retrieved from GPS/GLONASS receiving station network
are marked.
Keywords: GPS, GLONASS, wet and cloud delays, total water vapor content, total cloud liquid water content, algorithms, AMSR-E, Aqua, tropical cyclones
Full text


  1. Bin B.R., Datton E.D., Radiometeorologiya (Radiometeorology), Leningrad: Gidrometeoizdat, 1971, 362 p.
  2. Kutuza B.G., Radiotekhnika i elektronika, 1974, Vol. 19, No. 4, pp. 665–670.
  3. Mitnik L.M., Radiotekhnika i elektronika, 1973, No. 9, pp. 1808–1815.
  4. Mitnik L.M., Issledovanie Zemli iz kosmosa, 1984, No. 3, pp. 66–71.
  5. Mitnik L.M., Kukharskaya N.F., Aviatsionnaya i kosmicheskaya meteorologiya, 1977, Issue 64, pp. 75–78.
  6. Mitnik M.L., Mitnik L.M., Issledovanie Zemli iz kosmosa, 2006, No. 4, pp. 34–41.
  7. Ding X.-L., Li Z.-W., Zhu J.-J., Feng G.-C., Long J.-P., Atmospheric effects on InSAR measurements and their mitigation, Sensors, 2008, Vol. 8, pp. 5426–5448, doi: 10.3390/s8095426.
  8. Gentemann C.L., Meissner T. Wentz F.J., Accuracy of satellite sea surface temperatures at 7 and 11 GHz, IEEE Trans. Geoscience Remote Sensing, 2010, Vol. 48, pp. 1009–1018, doi: 10.1109/TGRS.20092030322.
  9. Gentemann C.L., Wentz F.J., Brewer M., Hilburn K.A., Smith D.K., Passive microwave remote sensing of the ocean: an overview (from “Oceanography from Space”), Springer, 2010, pp. 13–33.
  10. Gradinarsky L.P., Jarlemark P., Ground-based GPS tomography of water vapor: Analysis of simulated and real data, Journal of the Meteorological Society of Japan, 2004, Vol. 82, No. 1B, pp. 551–560.
  11. Heise S., Dick G., Gendt G., Schmidt T., Wickert J., Integrated water vapor from IGS ground-based GPS observations: initial results from a global 5-min data set, Annales de Geophysicae, 2009, Vol. 27, pp. 2851–2859.
  12. Hilburn K.A., Wentz F.J., Mears C.A., Meissner T., Smith D. K., Description of Remote Sensing Systems Version-7 Geophysical Retrievals, Remote Sensing Systems, 2010, available at:
  13. 13. Mitnik L.M., Mitnik M.L., Retrieval of atmospheric and ocean surface parameters from ADEOS-II AMSR data: comparison of errors of global and regional algorithms, Radio Science, 2003, Vol. 38, No. 4, p. 8065, doi: 10.1029/2002RS002659.
  14. Sibthorpe A., Brown S., Desai S.D., Haines B.J., Calibration and validation of the Jason-2/OSTM Advanced Microwave Radiometer using terrestrial GPS stations, Marine Geodesy, 2011, Vol. 3–4, No. 3–4, pp. 420–430, doi: 10.1080/01490419.2011.584839.
  15. Solheim F.S., Vivekanandan J., Ware R.H., Rocken C., Propagation delays induced in GPS signals by dry air, water vapor, hydrometeors, and other particulates, Journal of Geophysical Research, 1999, Vol. 104, No. D8, pp. 9663–9670.
  16. Van Baelen J., Reverdy M., Tridon F., Labbouz L., Dick G., Bender M., Hagen M., On the relationship between water vapour field evolution and the life cycle of precipitation systems, Quarterly J. Royal Meteorological Soc., 2011. Vol. 137, pp. 204–223.