Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, Vol. 9, No. 3, pp. 65-69
One channel texture based segmentation: application examples
Institute of Radioengineering and Electronics of RAS, Fryazino, Vvedensky sq., 1
The paper proposes to use the textural features, obtained from grey level co-occurrence matrix (GLCM), to segment one channel images. Some texture segmentation examples of SAR and optical images are demonstrated.
Keywords: one channel image, segmentation, texture features, second order statistics
Full textReferences:
- Astafurov V.G., Skorokhodov A.V., Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, Vol. 8, No. 1, pp. 65–72.
- Kozlov Z.V., Pavlyukov S.S., Sukhanov K.Yu., Gidroakustichnii zhurnal, 2006, No. 3, pp. 25–31.
- Mitsel' A.A., Kolodnikova N.V., Protasov K.T., Izv. Tomskogo politekhnich. un-ta, 2005, Vol. 308, No. 1, pp. 65–70.
- Caridade C.M.R., Marçal A.R.S., Mendonça T., The use of texture for image classification of black & white air-photographs, (from New Developments and Challenges in Remote Sensing), Rotterdam: Millpress, 2007.
- Freeman A., Durden S.L., A three-component scattering model for polarimetric SAR data, IEEE Trans. Geoscience and Remote Sensing, 1998, Vol. 36, No. 3, pp. 963–973.
- Haralick R.M., Textural Features for Image Classification, IEEE Trans. Systems, Man, and Cybernetics,1973, Vol. 3, No. 6, pp. 610–621.
- Kuplich T., Curran P., Atkinson P., Relating SAR image texture to the biomass of regenerating tropical Forests, International Journal of Remote Sensing, 2005, Vol. 26, No. 21, pp. 4829–4854.
- Lee J.-S., Grunes M.R., De Grandi G., Polarimetric SAR speckle filtering and its implication for classification, IEEE Trans. Geoscience and Remote Sensing, 1999, Vol. 37, No. 5, pp. 2363–2373.
- De Morais M. C., Junior P.M.P., Paradella W. R., Potential of SAR data (L-hh-hv-vv) to discriminate iron-mineralised laterites in the Amazon Region (Carajás Province) based on textural attributes, Proc. Anais 13 Simpósio Brasileiro de Sensoriamento Remoto, Florianópolis, Brasil. 2007, pp. 2069-2078.
- Puissant J., Hirsch J., Weber C., The utility of texture analysis to improve per-pixel classification for high to very high spatial resolution imagery, International Journal of Remote Sensing, 2005, Vol. 26, No. 4, pp. 733–745.
- Rodionova N.V., One channel image texture based interpretation, Proc. PolInSAR-2011, Frascati, 2011, CD-ROM.
- Soh L.-K., Tsatsoulis C., Texture Analysis of SAR Sea Ice Imagery Using Gray Level Co-Occurrence Matrices, IEEE Trans. Geoscience and Remote Sensing, 1999, Vol. 7, No. 2.
- Tiwari S., Agarwal S., Trang A., Texture Feature Selection for Buried Mine Detection in Airborne Multispectral Imagery, Proc. IGARSS’2008, Boston, 2008, CD-ROM.
- Ulaby F.T., Kouyate F., Brisco B., Williams T.H.L., Textural Information in SAR Images, IEEE Trans. Geoscience and Remote Sensing, 1986, Vol. GE-24 (2), pp. 235–245.