ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, Vol. 9, No. 2, pp. 130-142

On processing and interpretation of the SAR interferometry data in the case of the landslide monitoring

P.N. Dmitriev 1, V.I. Golubev 1, Yu.S. Isaev 2, E.A. Kiseleva 1, V.O. Mikhailov 1, E.I. Smolyaninova 1
1 The Schmidt Institute of Physics of the Earth, 123995 Moscow, 10-1 Gruzinskaya str
2 «Lenmetrogiprotrans», St. Petersburg, Russia
The goal of this article is the improvement of the procedure of processing of satellite radar images for identification of earth surface movements and development of methods for interpretation results obtained. The procedure for choosing of «reference area» in the case of absence of prior information about the movements of the surface is proposed. The method for calculation of all components of displacement vector of landslides and glaciers using two different tracks of satellite was developed.
The methods were tested on the problem of monitoring of landslides near the railway Adler - Krasnaya Polyana. In this study images form the ascending and descending tracks of ENVISAT were used. Interferometry processing was done using free distributed software StaMPS
Keywords: synthetic aperture radar, interferometry, satellite monitoring, landslides
Full text

References:

  1. Mikhailov V.O., Nazaryan A.N., Smirnov V.B., Diaman M., Shapiro N., Kiseleva E.A., Tikhotskii S.A., Polyakov S.A., Smol'yaninova E.I., Timoshkina E.P., Izvestiya RAN. “Fizika Zemli”, 2010, No. 2, pp. 3–16.
  2. Nazaryan A.N., Mikhailov V.O., Kiseleva E.A., Smol'yaninova E.I., Timoshkina E.P., Diaman M., Shapiro N., Geofizika, 2008, No. 5, pp. 69–75.
  3. Attema E., Levrini G., Davidson M., Sentinel-1 ESA’s new European radar observatory - The Future of Remote Sensing, Second International Workshop of VITO & ISPRS Inter - Commission Working Group I/V Autonomous Navigation, 2007.
  4. Barbort S., Hamiel Y., Fialko Y., Space geodetic investigation of the coseismic and postseismic deformation due to the 2003 Mw 7.2 Altai earthquake: Implication for the local lithospheric rheology, Journal of Geophysical Research, 2008, Vol. 113, B03403, doi: 10.1029/2007JB005063.
  5. Cakir Z., Armijo R., Chabalier J.B., Meyer B., Barka A., Peltzer G., Coseismic and Early Postseismic Slip Associated with the 1999 Izmit Earthquake (Turkey), from SAR Interferometry and Tectonic Field Observations, Geophysical Journal International, 2003, Vol. 155, Issue 1, doi: 10.1046/j.1365-246X.2003-02001.x. P. 93–110.
  6. Colesanti C., Wasowski J., Investigating landslides with space-borne Synthetic Aperture Radar (SAR) Interferometry, Engineering Geology, 2006, Vol. 88, pp. 173–199.
  7. Delft object-oriented interferometric software user’s manual and technical documentation. Version 4.02, Delft institute of earth observation and space systems, Delft university of Technology, 2008, 160 p.
  8. Farina P., Colombo D., Fumagalli A., Manunta P., Moretti S., Landslide Risk Analysis by means of Remote Sensing Techniques: Results from the ESA/SLAM Project, Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2004), Anchorage, USA, 2004, Vol. 1, pp. 62–65.
  9. Ferretti A., Permanent scatterers in SAR interferometry, IEEE Transactions on Geoscience and Remote Sensing, 2001, Vol. 39, No. 1, pp. 8–20.
  10. Foumelis M., Parcharidis I., Lagios E., Voulgaris N., Evolution of post-seismic ground deformation of the Athens 1999 earthquake observed by SAR interferometry, Journal of Applied Geophysics, 2009, doi. 10.10.1016/j.jappgeo.2009.02.007.
  11. Hooper A., Zebker H., Segall P., Kampes B., A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers, Geophysical Research Letters, 2004, Vol. 31, L. 23611, doi: 10.1029/2004GL021737.
  12. Hooper A., A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches, Geophysical Research Letters, 2008, Vol. 35, L. 16302, doi: 10.1029/2008GL034654.
  13. Johan M., Niels R., Soren M., Three-dimensional glacial flow and surface elevation measured with radar interferometry, Nature, 1998, No. 391, pp. 273–376.
  14. Kimura H., Yamaguchi Y., Detection of Landslide Areas Using Satellite Radar Interferometry, Photogrammetric Engineering & Remote Sensing, 2000, Vol. 66, No. 3, pp. 337–344.
  15. Kumar V., Venkataraman G., Rao Y., SAR interferometry and Speckle tracking approach for glacier velocity estimation using ERS-1/2 and TerraSAR-X spotlight high resolution data, Geoscience and Remote Sensing Symposium, 2009, doi: 10.1109/IGARSS.2009.5417663, pp. 332–335.
  16. Meisina C., Zucca F., Conconi F., Verri F., Fossati D., Ceriani M., Allievi J., Use of Permanent Scatterers Technique for Large-scale Mass Movement Investigation, Quaternary International, 2007, pp. 90–107.
  17. Mikhailov V. O., Kiselyova E. I., Smolyaninova E. I., Regarding the possibility of satellite radar interferometry use for monitoring of the Kuril island arc volcanoes, 2011, pp. 151–159.
  18. Venkataraman G., Rao Y., Rao K., Application of SAR Interferometry for Himalayan Glaciers, Proceedings of Fringe Workshop, 2005.