ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 1, pp. 83-94

Methods and results of determination of movements and deformations of the Earth’s crust according to GNSS data at the Nizhne-Kansk geodynamic test network in the area of radioactive waste disposal

V.I. Kaftan 1, 2 , A.D. Gvishiani 1, 3 , V.N. Morozov 1 , V.N. Tatarinov 1, 3 
1 Geophysical Center RAS, Moscow, Russia
2 Peoples Friendship University of Russia, Moscow, Russia
3 Schmidt Institute of Physics of the Earth RAS, Moscow, Russia
Accepted: 06.12.2018
DOI: 10.21046/2070-7401-2019-16-1-83-94
The methods and results of determining the current movements and deformations of the Earth’s crust by means of global navigation satellite systems (GNSS) at a geodynamic test site in the area of deep burial of radioactive waste in Krasnoyarskiy Kray are considered. Approaches to observations and data processing are aimed at obtaining the most accurate results of deformation monitoring. The method of repeated observations ensures the weakening of one-directional measurement errors of a seasonal and local nature due to the organization of work at one and the same time of the year, and using at each point the same set of measuring equipment in all repetitions. Techniques to improve the objectivity of the interpretation of results are applied. The measurement processing technique is an adjustment of the differences of the time-varying increments of the coordinates of the baseline vectors with regard to their covariance matrices. The result of processing is the vectors of spatial displacements and horizontal deformations of the triangles of the control observation network. To determine the deformations, the triangles of Delaunay triangulation are selected. To eliminate the effect of triangles unequality, they are scaled by assigning them to the average area of the triangle. New results of the determination of deformations accumulated in the region of the Nizhnekanskiy Massif from 2012 to 2016 are described. The magnitude of the deformations of the order of 10–5 indicate a high mobility of tectonic faults of the studied territory.
Keywords: global navigation satellite system, geodynamic test area, monitoring, deformation, radioactive waste disposal
Full text

References:

  1. Anderson E. B., Belov S. V., Kamnev E. N., Kolesnikov I. Yu., Lobanov N. F., Morozov V. N., Tatarinov V. N., Podzemnaya izolyatsiya radioaktivnykh otkhodov (Underground isolation of radioactive waste), Moscow: Gornaya kniga, 2011, 592 p.
  2. Gvishiani A. D., Tatarinov V. N., Geologicheskaya sreda i problema obespecheniya bezopasnosti podzemnoi izolyatsii RAO (Geological environment and the problem of ensuring the safety of underground isolation of radioactive waste), Gornyi zhurnal, 2015, No. 10, pp. 4–5.
  3. Gvishiani A. D., Belov S. V., Agayan S. M., Rodkin M. V., Morozov V. N., Tatarinov V. N., Bogoutdinov Sh. R., Metody iskusstvennogo intellekta pri otsenke tektonicheskoi stabil’nosti Nizhnekanskogo massiva (Methods of artificial intelligence in assessing the tectonic stability of the Nizhnekansky massif), Inzhenernaya ekologiya, 2008, No. 2, pp. 3–14.
  4. Gvishiani A. D., Tatarinov V. N., Morozov V. N. (2018a), Sistemnaya otsenka faktorov, opredelyayushchikh ustoichivost’ geologicheskoi sredy pri zakhoronenii vysokoaktivnykh radioaktivnykh otkhodov (Systemic assessment of factors determining the stability of the geological environment during the disposal of high-level radioactive waste), 10-ya mezhdunarodnaya konferentsiya “Monitoring yadernykh ispytanii i ikh posledstvii” (10th Intern. Conf. “Monitoring of nuclear tests and their effects”), Book of Abstracts, Almaty, Kazakhstan, Kurchatov: NYaTs RK, 2018, pp. 105–106.
  5. Gvishiani A. D., Vaisberg L. A., Tatarinov V. N., Manevich A. I. (2018b), Sistemnyi analiz v gornykh naukakh i umen’shenii prirodnogo ushcherba (Systems analysis in mining sciences and natural damage reduction), Materialy mezhdunarodnoi konferentsii, posvyashchennoi pamyati akademika A. V. Kryazhimskogo “Sistemnyi analiz: modelirovanie i upravlenie” (Proc. Intern. Conf. Devoted to the Memory for Academician A. V. Kriazhimsky “System Analysis: Modeling and Management”), Moscow: Matematicheskii institut im. V. A. Steklova RAN, 2018, pp. 43–45.
  6. Geodezicheskie metody izucheniya deformatsii zemnoi kory na geodinamicheskikh poligonakh: Metod. ruk. (Geodesic methods for studying the deformations of the earth’s crust at geodynamic polygons: Methodological guide), Moscow: TsNIIGAiK, 1985, 113 p.
  7. Gerasimenko M. D., Sharoglazova G. A., Opredelenie sovremennykh dvizhenii zemnoi kory iz povtornykh izmerenii (Determination of recent crustal movements from repeated measurements), Geodeziya i kartografiya, 1985, No. 7, pp. 25–29.
  8. Esikov N. P., Tektonofizicheskie aspekty analiza sovremennykh dvizhenii zemnoi poverkhnosti (Tectonophysical aspects of the analysis of resent movements of the earth’s surface), Trudy Instituta geologii i geofiziki SO AN SSSR, 1979, Issue 426, 182 p.
  9. Esikov N. P., Sovremennye dvizheniya zemnoi poverkhnosti s pozitsii teorii deformatsii (Recent movements of the earth’s surface from the standpoint of the theory of deformation), Novosibirsk: Nauka, Sib. otdelenie, 1991, 226 p.
  10. Kaftan V. I., Analiz ustoichivosti geodezicheskikh punktov i opredelenie vektorov smeshchenii zemnoi kory (Analysis of the stability of geodetic points and the determination of the displacement vectors of the earth’s crust), Geodeziya i kartografiya, 1986, No. 5, pp. 9–13.
  11. Kaftan V. I., Vremennoi analiz geoprostranstvennykh dannykh: Kinematicheskie modeli: Dis. dokt. tekhn. nauk (Temporal analysis of geospatial data: Kinematic models, Dr. techn. sci. thesis), Moscow: MGUPS, 2003, 285 p.
  12. Kaftan V. I., Ustinov A. V., Povyshenie tochnosti lokal’nogo geodinamicheskogo monitoringa sredstvami global’nykh navigatsionnykh sputnikovykh sistem (Improving the accuracy of local geodynamic monitoring by means of global navigation satellite systems), Gornyi zhurnal, 2015, No. 12, pp. 32–37.
  13. Kaftan V. I., Krasnoperov R. I., Yurovskii P. P., Graficheskoe predstavlenie rezul’tatov opredeleniya dvizhenii i deformatsii zemnoi poverkhnosti sredstvami global’nykh navigatsionnykh sputnikovykh system (Graphical representation of the results of determining the movements and deformations of the Earth’s surface by means of global navigation satellite systems), Geodeziya i kartografiya, 2010, No. 11, pp. 2–7.
  14. Kaftan V. I., Sidorov V. A., Ustinov A. V., A Comparative Analysis of the Accuracy Attainable for the Local Monitoring of Earth’s Surface Movements and Deformation Using the GPS and GLONASS Navigation Satellite Systems, J. Volcanology and Seismology, 2017, Vol. 11, No. 3, pp. 217–224, DOI: 10.1134/S0742046317030034.
  15. Kuzmin Yu. O. (2002a), Sovremennaya anomal’naya geodinamika aseismichnykh razlomnykh zon (Modern anomalous geodynamics of aseismic fault zones), Elektronnyi nauchno-informatsionnyi zhurnal “Vestnik Otdeleniya Nauk o Zemle RAN”, 2002, No. 1(20), pp. 1–27.
  16. Kuzmin Yu. O. (2002b), Sovremennaya anomal’naya geodinamika nedr, indutsirovannaya malymi prirodno-tekhnogennymi vozdeistviyami (Recent anomalous geodynamics of the Earth interior, induced by small natural and man-made effects), Gornyi informatsionno-analiticheskii byulleten’, Moscow: MGGU, 2002, No. 9, pp. 48–55.
  17. Tatarinov V. N., Geodinamicheskaya bezopasnost’ na obektakh yadernogo toplivnogo tsikla (Geodynamic safety at nuclear fuel cycle facilities), Ispol’zovanie i okhrana prirodnykh resursov v Rossii, 2006, No. 1(85), pp. 46–51.
  18. Tatarinov V. N., Tatarinova T. A., Uchet masshtabnogo effekta pri nablyudeniyakh za deformatsiyami zemnoi poverkhnosti sputnikovymi navigatsionnymi sistemami (Consideration of the scale effect when observing deformations of the Earth’s surface by satellite navigation systems), Marksheiderskii vestnik, 2012, No. 5, pp. 15–19.
  19. Tatarinov V. N., Bugaev E. G., Tatarinova T. A., K otsenke deformatsii zemnoi poverkhnosti po dannym sputnikovykh nablyudenii (Estimation of Earth Surface Deformations Based on Satellite Observations), Gornyi zhurnal, 2015, No. 10, pp. 27–32, DOI: dx.doi.org/10.17580/gzh.2015.10.05.
  20. Tatarinov V. N., Kaftan V. I., Seelev I. N., Izuchenie sovremennoi geodinamiki Nizhne-Kanskogo massiva dlya bezopasnogo zakhoroneniya radioaktivnykh otkhodov (Study of the modern geodynamics of the Nizhnekanskiy Massif for safe burial of radioactive waste), Atomnaya energiya, 2016, Vol. 121, No. 3, pp. 157–160.
  21. Ustinov A. V., Kaftan V. I., Sutochnye i polusutochnye kolebaniya v rezul’tatakh lokal’nogo monitoringa s ispol’zovaniem global’nykh navigatsionnykh sputnikovykh sistem (Diurnal and semi-diurnal fluctuations as the result of local monitoring using global navigation satellite systems), Izvestiya Vserosiiskogo nauchno-issledovatel’skogo instituta gidrotekhniki im. B. E. Vedeneeva, 2016, Vol. 282, pp. 3–13.
  22. Hefty J., Igondova M., Diurnal and semi-diurnal coordinate variations observed in EUREF permanent GPS network ― a case study for period from 2004.0 to 2006.9, Contribution to Geophysics and Geodesy, 2010, Vol. 40, No. 3, pp. 225–247.
  23. Kaftan V. I., Tatevian R. A., Local control network of the fiducial GLONASS/GPS station, IAG, Section I ― Positioning, Comission X ― Global and Regional Networks, Subcommission for Europe (EUREF), Publication No. 9, Munchen, 2000, pp. 333–337, URL: http://www.euref.eu/symposia/book2000/P_333_337.pdf .
  24. Tatarinov V., Kaftan V., Tatarinova T., Manevich A., Modern Geodynamics of South Yenisei Ridge to Result of the GPS/GLONASS Observations, IOP Conf. Series: Earth and Environmental Science, 2017, 95 032024, DOI: doi.org/10.1088/1755-1315/95/3/032024.