ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, Vol. 9, No. 1, pp. 95-107

Crop Yield Forecasting Regression Models based on MODIS Data

N.N. Kussul 1, A.N. Kravchenko 1, S.V. Skakun 1, T.I. Adamenko 2, A.Yu. Shelestov 3, A.V. Kolotii 1, Yu.A. Gripich 1
1 Space Research Institute NASU-NSAU, 03680 Kyiv, 40 Glushkov Prospekt, build. 4/1
2 Ukrainian Hydrometeorological Center, 01034,Kyiv, 6-V Zolotovoritska str
3 National University of Life and Environment Sciences of Ukraine, 03187 Kyiv, 15 Geroev Oborony str
Information technology for crop yield forecasting model creation is proposed on the base of satellite data and inductive approach. A first order regression model is used with 16-days composite of maximum NDVI for crop mask as a predictor. A crop mask is built automatically using clusterization of an NDVI time series (using k-means or Kohonen maps). It is shown that accuracy of the forecasting model for the entire region is better than for separate districts. The proposed approach can be used not only for winter wheat crop yield forecasting, but also for other crops, in particular spring crops
Keywords: Crop yield forecasting, regression model, crop mask, information technology, MODIS, NDVI, clusterization, Kohonen map
Full text


  1. Becker-Reshef I., Vermote E., Lindeman M., Justice C., A generalized regression-based model for forecasting winter wheat yields in Kansas and Ukraine using MODIS data, Remote Sensing of Environment, 2010, Vol. 114(6), pp. 1312–1323.
  2. Chipanshi A.C., Ripley E.A., Lawford R.G., Large-scale simulation of wheat yields in a semi-arid environment using a crop-growth model, Agricultural Systems, 1999, Vol. 59, pp. 57–66.
  3. Doraiswamy P.C., Cook P.W., Spring wheat yield assessment using NOAA AVHRR data, Canadian Journal of Remote Sensing, 1995, Vol. 21, pp. 43−51.
  4. Doraiswamy P.C., Moulin S., Cook P.W., Stern A., Crop yield assessment from remote sensing, Photogrammetric Engineering and Remote Sensing, 2003, Vol. 69, pp. 665–674.
  5. Haykin S., Neural Networks: A Comprehensive Foundation, Upper Saddle River, New Jersey: Prentice Hall International, 1999, 842 p.
  6. Kussul N., Shelestov A., Skakun S., Intelligent Computations for Flood Monitoring, Advanced Research in Artificial Intelligence, 2008, No. 2, pp. 48–54.
  7. Maselli F., Rembold F., Analysis of GAC NDVI data for cropland identification and yield forecasting in Mediterranean African countries, Photogrammetric Engineering and Remote Sensing, 2001, Vol. 67, pp. 593–602.
  8. Manjunath K.R., Potdar M.B., Purohit N.L., Large area operational wheat yield model development and validation based on spectral and meteorological data, International Journal of Remote Sensing, 2002, Vol. 23, pp. 3023–3038.
  9. Moriondo M., Maselli F., Bindi M., A simple model of regional wheat yield based on NDVI data, European Journal of Agronomy, 2007, Vol. 26, pp. 266–274.
  10. Pinter P.J., Jackson R.D., Idso S.B., Reginato R.J., Multidate spectral reflectances as predictors of yield in water stressed wheat and barley, International Journal of Remote Sensing, 1981, Vol. 2, pp. 43–48.
  11. Prasad A.K., Chai L., Singh R.P., Kafatos M., Crop yield estimation model for Iowa using remote sensing and surface parameters, International Journal of Applied Earth Observation and Geoinformation, 2006, Vol. 8, pp. 26–33.
  12. Tucker C.J., Holben B.N., Elgin J.H., McMurtrey J.E., Relationships of spectral data to grain yield variation, Photogrammetric Engineering and Remote Sensing, 1980, Vol. 46, pp. 657-666.
  13. Wall L., Larocque D., Leger P.M., The early explanatory power of NDVI in crop yield modeling, International Journal of Remote Sensing, 2007, Vol. 29, pp. 2211–2225.
  14. Kussul' N.N., Sokolov B.V., Zelyk Ya.I., Zelentsov V.A., Skakun S.V., Shelestov A.Yu., Problemy upravleniya i informatiki, 2010, No. 6, pp. 97–110.
  15. Kussul' N.N., Il'in N.I., Skakun S.V., Lavrenyuk A.N., Decision Making and Business Intelligence, Strategies and Techniques, 2008, No. 3, pp. 103–109.
  16. Savin I.Yu., Bartalev S.A., Lupyan E.A., Tolpin V.A., Khvostikov S.A., Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2010, Vol. 7, No. 3, pp. 275–285.
  17. Shelestov A.Yu., Kravchenko O.M., Voloshin S.V., Gripich Yu.A., Kussul' O.M., Mironov A.I., Pravdyukov P.M., Nauka ti innovatsi (ukr.), 2011, No. 3.