ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 1, pp. 39-49

Satellite-derived bathymetry in the coastal zone of the Black Sea from remote sensing reflectance

S.V. Fedorov 1 , S.V. Stanichny 1 
1 Marine Hydrophysical Institute RAS, Sevastopol, Russia
Accepted: 13.12.2021
DOI: 10.21046/2070-7401-2022-19-1-39-49
The work is devoted to demonstrating the possibility of retrieving bathymetry in the coastal zone of the Black Sea from satellite measurements in the optical range of the electromagnetic spectrum. The method for the retrieval of satellite-derived bathymetry based on remote sensing reflectance is used. In optically shallow water, solar radiation reaches the bottom and is reflected back to the surface. Thus, remote sensing reflectance contains information about the depth and bottom substrate type, which makes it possible to solve the inverse problem of depth retrieval. Remote sensing reflectance was determined from Sentinel-2 MSI images. Atmospheric correction was performed in the ACOLITE software. The method of depth assessment consisted in calculating an index characteristic (pseudo-depth) equal to the ratio of the logarithms of remote sensing reflectance in two spectral bands with different absorption of solar radiation. Conversion of the obtained index into depths was carried out on the basis of a linear relationship with coefficients calibrated according to navigation maps. This method allows reconstructing bathymetry with a spatial resolution equal to pixel size of a satellite image. It helped to detect small inhomogeneities of the bottom relief in the coastal zone of Bakalskaya Spit. The applicability of this method depends on water transparency and does not exceed a depth of 20 m.
Keywords: satellite-derived bathymetry, Sentinel-2, Black Sea, Kazachya Bay, Bakalskaya Spit
Full text

References:

  1. Divinsky B. V., Kosyan R. D., Hydrodynamic Conditions of the Bakalskaya Spit Degradation (Western Crimea) over the Past 30 Years, Physical Oceanography, 2021, Vol. 28(3), pp. 266–281, DOI: 10.22449/1573-160X-2021-3-266–281.
  2. Pivaev P. D., Kudryavtsev V. N., Balashova E. A., Chapron B., SAR Imaging Features of Shallow Water Bathymetry, Physical Oceanography, 2020, Vol. 27(3), pp. 290–304, DOI: 10.22449/1573-160X-2020-3-290-304.
  3. Rudnev V. I., Peculiarities of the bottom relief of the Bakalskaya Spit foreshore, Ekologicheskaya bezopasnost’ pribrezhnoi i shel’fovoi zon morya, 2018, No. 4, pp. 15–21 (in Russian), DOI: 10.22449/2413-5577-2018-4-15-21.
  4. Fedorov S. V., Stanichny S. V., Satellite-derived bathymetry in the coastal zone of the Black Sea from the surface wave field, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 6, pp. 85–96 (in Russian), DOI: 10.21046/2070-7401-2021-18-6-85-96.
  5. Yurovskaya M. V., Kudryavtsev V. N., Stanichnyi S. V., Reconstruction of surface wave kinematic characteristics and bathymetry from Geoton-L1 multichannal optical images from Resurs-P satellite, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 2, pp. 218–226 (in Russian), DOI: 10.21046/2070-7401-2019-16-2-218-226.
  6. Boccia V., Renga A., Moccia A., Zoffoli S., Tracking of Coastal Swell Fields in SAR Images for Sea Depth Retrieval: Application to ALOS L-Band Data, IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing, 2015, Vol. 8, No. 7, pp. 3532–3540, DOI: 10.1109/JSTARS.2015.2418273.
  7. Brusch S., Held P., Lehner S., Rosenthal W., Pleskachevsky A., Underwater Bottom Topography in Coastal Areas from TerraSAR-X Data, Intern. J. Remote Sensing, 2011, Vol. 32, No. 16, pp. 4527–4543, DOI: 10.1080/01431161.2010.489063.
  8. Caballero I., Stumpf R. P., Retrieval of nearshore bathymetry from Sentinel-2A and 2B satellites in South Florida coastal waters, Estuarine, Coastal and Shelf Science, 2019, Vol. 226, 106277, DOI: 10.1016/j.ecss.2019.106277.
  9. Caballero I., Stumpf R. P., Towards Routine Mapping of Shallow Bathymetry in Environments with Variable Turbidity: Contribution of Sentinel-2A/B Satellites Mission, Remote Sensing, 2020, Vol. 12(451), DOI: 10.3390/rs12030451.
  10. Dekker A. G., Phinn S. R., Anstee J., Bissett P., Brando V. E., Casey B., Fearns P., Hedley J., Klonowski W., Lee Z. P., Lynch M., Lyons M., Mobley C. D., Roelfsema C., Intercomparison of shallow water bathymetry, hydro-optics, and benthos mapping techniques in Australian and Caribbean coastal environments, Limnology. Oceanography. Methods, 2011, No. 9, pp. 396–425, DOI: 10:4319/lom.2011.9.396.
  11. Drusch M., Bello U. D., Carlier S., Colin O., Fernandez V., Gascon F., Hoersch B., Isola C., Laberinti P., Martimort P., Meygret A., Spoto F., Sy O., Marchese F., Bargellini P. L., Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services, Remote Sensing of Environment, 2012, Vol. 120, pp. 25–36, DOI: 10.1016/J.RSE.2011.11.026.
  12. Lee Z. P., Carder K. L., Mobley C. D., Steward R. G., Patch J. S., Hyperspectral remote sensing for shallow waters: 1. A semianalytical model, Applied Optics, 1999, Vol. 37(27), pp. 6329–6338, DOI: 10.1016/J.RSE.2011.11.026.
  13. Lyzenga D. R., Remote Sensing of Bottom Reflectance and Water Attenuation Parameters in Shallow Water Using Aircraft and Landsat Data, Intern. J. Remote Sensing, 1981, Vol. 2, No. 1, pp. 71–82, DOI: 10.1080/01431168108948342.
  14. Lyzenga D. R., Malinas N. P., Tanis F. J., Multispectral Bathymetry Using a Simple Physically Based Algorithm, IEEE Trans. Geoscience and Remote Sensing, 2006, Vol. 44, No. 8, pp. 2251–2259, DOI: 10.1109/TGRS.2006.872909.
  15. Pe’eri S., Azuike C., Parrish C., Satellite Remote Sensing as a Reconnaissance Tool for Assessing Nautical Chart Adequacy and Completeness, Marine Geodesy, 2014, Vol. 37, pp. 293–314, DOI: 10.1080/01490419.2014.902880.
  16. Philpot W., Bathymetric Mapping with Passive Multispectral Imagery, Applied Optics, 1989, Vol. 28, pp. 1569–1578, DOI: 10.1364/AO.28.001569.
  17. Stumpf R. P., Holderied K., Sinclair M., Determination of Water Depth with High-Resolution Satellite Imagery over Variable Bottom Types, Limnology and Oceanography, 2003, Vol. 48, pp. 547–556, DOI: 10.4319/LO.2003.48.1_PART_2.0547.
  18. Su H., Liu H., Heyman W. D., Automated Derivation of Bathymetric Information from Multi-Spectral Satellite Imagery Using a Non-Linear Inversion Model, Marine Geodesy, 2008, Vol. 31, pp. 281–298, DOI: 10.1080/01490410802466652.
  19. The International Hydrographic Review, International Hydrographic Organization, Monaco, 2017, 53 p., available at: https://www.iho.int/mtg_docs/IHReview/2017/IHR_November2017.pdf.
  20. Vanhellemont Q., Adaptation of the dark spectrum fitting atmospheric correction for aquatic applications of the Landsat and Sentinel-2 archives, Remote Sensing of Environment, 2019, Vol. 225, pp. 175–192, DOI: 10.1016/J.RSE.2019.03.010.