ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 2, pp. 143-155

Decrease of NDVI values in the southern tundra of Yamal in 2001–2018 correlates with the size of domesticated reindeer population

D.V. Veselkin 1 , L.M. Morozova 1 , A.M. Gorbunova 1 
1 Institute of Plant and Animal Ecology UB RAS, Ekaterinburg, Russia
Accepted: 06.04.2021
DOI: 10.21046/2070-7401-2021-18-2-143-155
This work aimed to establish the direction of the current dynamics of the NDVI index values in the Yamal Peninsula southern subarctic tundra subzone and to assess its possible causes. For this purpose, we recorded NDVI using the VEGA-Science service of the Space Research Institute RAS during the growing seasons in 2001–2018 at 15 polygons. The temperature conditions of the growing seasons and the size of domesticated reindeer population were assumed to be the main factors determining NDVI. We established that the average NDVI (NDVIAVG) values during the growing season in 2001–2018 decreased by 0.036±0.006 NDVIAVG /10 years. Additionally, the average annual air temperature increased by 1.1 °C/10 years. The size of domesticated reindeer population grazing on the peninsula varied from 200 to 330 thousand individuals and increased by 55±12 thousand individuals/10 years on average. The relationship between NDVIAVG and the growing season air temperature is weak and positive; fluctuations in the growing season air temperature explain up to 3 % of the total variability of NDVIAVG. On the contrary, the relationship between NDVI and the reindeer population size is strongly negative; fluctuations in the reindeer population size explain up to 39 % of the NDVIAVG variability. Thus, our data show that a significant factor in the state of vegetation in southern Yamal at the beginning of the 21st century is the heavy pressure of phytophages, namely — domesticated reindeer.
Keywords: Yamal, climate change, Arctic, vegetation productivity, VEGA-Science, domesticated reindeer, phytophage press, pasture use
Full text


  1. Belonovskaya E. A., Tishkov A. A., Vaisfeld M. A., Glazov P. M., Krenke (junior) A. N., Morozova O. V., Pokrovskaya I. V., Tsarevskaya N. G., Tertitskii G. M., “Greening” of the Russian Arctic and the modern trends of transformation of its biota, Izvestiya Rossiiskoi akademii nauk. Seriya geograficheskaya, 2016, No. 3, pp. 28–39 (in Russian).
  2. Bobkov A. A., Panidi E. A., Tsepelev V. Yu., Influence of climate variations on state of vegetable cover of the north polar area of Russia, Vestnik Sankt-Peterburgskogo universiteta, 2014, Ser. 7, Issue 3, pp. 104–115 (in Russian).
  3. Bryksina N. A., Polishchuk V. Yu., Polishchuk Yu. M., Study of the relationship between changes in climatic and thermokarst processes in continuous and discontinuous permafrost zones of Western Siberia), Vestnik Yugorskogo gosudarstvennogo universiteta, 2009, Issue 3(14), pp. 3–12 (in Russian).
  4. Gileva L. N., Organization of rational use of reindeer pastures with the use of optimization models, Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta. Seriya “Estestvennye nauki”, 2018, Vol. 42, No. 3, pp. 435–445 (in Russian).
  5. Gorbunova A. M., Combining ground-based survey and remote sensing data to assess the grazing resources of the southern subarctic tundra, Aerokosmicheskie metody i geoinformatsionnye tekhnologii v lesovedenii, lesnom khozyaystve i ekologii (Aerospace methods and GIS–technologies in forestry, forest management and ecology), Proc. 7th All-Russia Conf., Moscow, 22–24 Apr., 2019, Moscow: CEPF RAS, 2016, pp. 41–42 (in Russian).
  6. Degermendzhi A. G., Vysotskaya G. S., Somova L. A., Pisman T. I., Shevyrnogov A. P., Long-term NDVI dynamics of vegetation in tundra of different classes depending on temperature and precipitation, Doklady Rossiiskoi akademii nauk. Nauki o Zemle, 2020, Vol. 493, No. 2, pp. 103–106 (in Russian).
  7. Elsakov V. V., The remote sensing data in European North productivity eatimation, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, Vol. 9, No. 1, pp. 71–79 (in Russian).
  8. Elsakov V. V., Spatial and interannual heterogeneity of changes in the vegetation cover of Eurasian tundra: Anslysis of 2000–2016 MODIS data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 6, pp. 56–72 (in Russian).
  9. Elsakov V. V., Shchanov V. M., Features of the spectral characteristics of coastal meadows on the eastern coast of Malozemelskaya tundra, In: Bioraznoobrazie nazemnykh i vodnykh ekosistem okhranyaemykh territorii Malozemel’skoi tundry i prilegayushchikh regionov (Biodiversity of terrestrial and aquatic ecosystems of protected areas of Malozemelskaya tundra and adjacent regions), Syktyvkar: Komi SC UB RAS, 2005, No. 178, pp. 5–20 (in Russian).
  10. Elsakov V. V., Shchanov V. M., Current changes in vegetation cover of Timan tundra reindeer pastures from analysis of satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 2, pp. 128–142 (in Russian).
  11. Zuev V. V., Korotkova E. M., Pavlinsky A. V., Climate-related changes in the vegetation cover of the taiga and tundra of Western Siberia in 1982–2015 according to satellite observations, Issledovanie Zemli iz kosmosa, 2019, No. 6, pp. 66–76 (in Russian).
  12. Im S. T., Kharuk V. I., Lee V. G., Migration of the northern evergreen needleleaf timberline in Siberia in the 21st century, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 1, pp. 176–187 (in Russian).
  13. Kirpotin S. N., Polishchuk Yu. M., Bryksina N. A., Thermokarst lakes square dynamics of west Siberian continuous and discontinuous permafrost under impact of global warming, Vestnik Tomskogo gosudarstvennogo universiteta, 2008, No. 311, pp. 185–189 (in Russian).
  14. Kryazhimskii F. V., Maklakov K. V., Morozova L. M., Ektova S. N., Systematic analysis of biogeocenoses of the Yamal Peninsula: simulation of the impact of large-herd reindeer husbandry on the vegetation cover, Ekologiya, 2011, No. 5, pp. 323–333 (in Russian).
  15. Lavrinenko I. A., Lavrinenko O. V., The impact of climate change on the plant cover of the barents sea islands, Trudy Karel’skogo nauchnogo tsentra RAN, 2013, No. 6, pp. 4–16 (in Russian).
  16. Loginov V. G., Ignatyeva M. N., Balashenko V. V., Harm to the resources of traditional nature management and its economic evaluation, Ekonomika regiona, 2017, Vol. 13, Issue 2, pp. 396–409 (in Russian).
  17. Loupian E., Savin I., Bartalev S., Tolpin V., Balashov I., Plotnikov D., Satellite Service for Vegetation Monitoring VEGA, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, Vol. 8, No. 1, pp. 190–198 (in Russian).
  18. Morozova L. M., Magomedova M. A., The influence of long-term reindeer grazing on the resource potential of the vegetation cover, In: Poluostrov Yamal: rastitel’nyi pokrov (Yamal Peninsula: vegetation cover), Tyumen: Siti-press, 2006, pp. 235–247 (in Russian).
  19. Morozova L. M., Magomedova M. A., Struktura rastitel’nogo pokrova i rastitel’nye resursy poluostrova Yamal (Vegetation cover structure and plant resources of the Yamal Peninsula), Ekaterinburg: Izd. Uralskogo universiteta, 2004, 64 p. (in Russian).
  20. Tishkov A. A., Belonovskaya E. A., Weisfeld M. A., Glazov P. M., Krenke A. N., Tertitsky G. M., “The Greening” of the tundra as a driver of the modern dynamics of the Arctic biota), Arktika: ekologiya i ekonomika, 2018, No. 2(30), pp. 31–44 (in Russian).
  21. Tolpin V. A., Bartalev S. A., Efremov V. J., Loupian E. A., Savin I. J., Flitman E. V., Capabilities of the information server SDMZ, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2010, No. 2, pp. 221–232 (in Russian).
  22. Shary P. A., Sharaya L. S., Sidyakina L. V., The relation of forest NDVI to climate in Volga basin, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 4, pp. 154–163 (in Russian).
  23. Bogdanov V. D., Golovatin M. G., Anthrax in Yamal: An Ecological View on Traditional Reindeer Husbandry, Russian J. Ecology, 2017, Vol. 48, No. 2, pp. 95–100.
  24. Bråthen K. A., Ravolainen V. T., Stien A., Tveraa T., Ims R. A., Rangifer management controls a climate-sensitive tundra state transition, Ecological Applications, 2017, No. 27(8), 43 p.
  25. Epstein H. E., Walker D. A., Raynolds M. K., Kelley A. M., Jia G. J., Ping C. L., Michaelson G. J., Leibman M. O., Kaarlejärvi E., Khomutov A., Kuss P., Moskalenko N., Orekhov P., Matyshak G., Forbes B. C., Yu Q., Vegetation biomass, leaf area index, and NDVI patterns and relationships along two latitudinal transects in arctic tundra, AGU Fall Meeting Abstracts, 14–18 Dec., 2009, San Francisco, CA, 2009, Abstr. id. GC31A-0697.
  26. Forbes B. C., Macias-Fauria M., Zetterberg P. I., Russian Arctic warming and ‘greening’ are closely tracked by tundra shrub willows, Global Change Biology, 2010, No. 16, pp. 1542–1554.
  27. Golovatin M. G., Morozova L. M., Ectova S. N., Effect of reindeer overgrazing on vegetation and animals of tundra ecosystems of the Yamal peninsula, Czech Polar Reports, 2012, Vol. 2, No. 2, pp. 80–91.
  28. Raynolds M. K., Walker D. A., Maier H. A., NDVI patterns and phytomass distribution in the circumpolar Arctic, Remote Sensing of Environment, 2006, No. 102, pp. 271–281.
  29. Raynolds M. K., Walker D. A., Epstein H. E., Pinzon J. E., Tucker J. A., New estimate of tundra-biome phytomass from trans-Arctic field data and VHRR NDVI, Remote Sensing Letters, 2012, Vol. 3, No. 5, pp. 403–411.
  30. Verma M., Schulte To Bühne H., Lopes M., Ehrich D., Sokovnina S., Hofhuis S. P., Pettorelli N., Can reindeer husbandry management slow down the shrubification of the Arctic? J. Environmental Management, 2020, No. 267, 7 p.
  31. Walker D. A., Epstein H. E., Jia G. J., Balser A., Copass C., Edwards E. J., Gould W. A., Hollingsworth J., Knudson J., Maier H. A., Moody A., Raynolds M. K., Phytomass, LAI, and NDVI in northern Alaska: Relationships to summer warmth, soil pH, plant functional types, and extrapolation to the circumpolar Arctic, J. Geophysical Research, 2003, Vol. 108, No. D2, Art. No. 8169, 18 p., DOI: 10.1029/2001JD000986.
  32. Walker D. A., Forbes B. C., Leibman M. O., Epstein H. E., Bhatt U. S., Comiso J. C., Drozdov D. S., Gubarkov A. A., Jia G. J., Kaarlejarvi E., Kaplan J. O., Khomutov A. V., Kofinas G. P., Kumpula T., Kuss P., Moskalenko N. G., Meschtyb N. A., Pajunen A., Raynolds M. K., Romanovsky V. E., Stammler F., Yu Q., Cumulative Effects of Rapid Land-Cover and Land-Use Changes on the Yamal Peninsula, Russia, Eurasian Arctic Land Cover and Land Use in a Changing Climate, G. Gutman, A. Reissell (eds.), 2011, pp. 207–236.